Free-space-to-waveguide demultiplexer featuring zero-contrast gratings
نویسندگان
چکیده
منابع مشابه
Properties of two-dimensional resonant reflectors with zero-contrast gratings.
The spectral properties of high-reflection mirrors imbued with two-dimensional (2D) subwavelength periodicity are investigated. The reflectors are designed in a silicon-on-glass film that is partially etched to implement a zero-contrast interface between the grating pillars and the sublayer, thereby annulling the local reflections and phase changes associated with hard interfaces. This approach...
متن کاملNonreciprocal waveguide Bragg gratings.
The use of a complex short-period (Bragg) grating which combines matched periodic modulations of refractive index and loss/gain allows asymmetrical mode coupling within a contra-directional waveguide coupler. Such a complex Bragg grating exhibits a different behavior (e.g. in terms of the reflection and transmission spectra) when probed from opposite ends. More specifically, the grating has a s...
متن کاملThermal Behavior of Waveguide Gratings
We investigate the design of binary grating structures, e.g. resonance waveguide filters (RWFs), with subwavelength feature sizes, taking the temperature dependence of different material parameters into account. Our final goal is to demonstrate devices with athermal operation. We design the binary grating structures to be made in polymer substrates, such as polycarbonate (PC), due to their pote...
متن کاملApodized photonic crystal waveguide gratings.
Apodized photonic crystal (PC) waveguide gratings are proposed to suppress sidelobes which appear in reflection spectra of usual PC waveguide gratings. By using specific functions (Gauss and Gauss-cosine functions) for the longitudinal refractive index distribution, it is possible to suppress sidelobes in the reflection spectra of PC waveguide gratings efficiently. The apodization is realized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Communications
سال: 2017
ISSN: 0030-4018
DOI: 10.1016/j.optcom.2016.11.037